Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography

نویسندگان

  • Andreas Hiltebrand
  • Siddhartha Mishra
چکیده

We describe a shock-capturing streamline diffusion space-time discontinuous Galerkin (DG) method to discretize the shallow water equations with variable bottom topography. This method, based on the entropy variables as degrees of freedom, is shown to be energy stable as well as well-balanced with respect to the lake at rest steady state. We present numerical experiments illustrating the numerical method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Space-time discontinuous Galerkin discretization of rotating shallow water equations

A space-time discontinuous Galerkin (DG) discretization is presented for the (rotating) shallow water equations over varying topography. We formulate the space-time DG finite element discretization in an efficient and conservative discretization. The HLLC flux is used as numerical flux through the finite element boundaries. When discontinuities are present, we locally apply dissipation around t...

متن کامل

Shallow Water Equations: Viscous Solutions and Inviscid Limit

We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical NavierStokes equations for barotropic gases; thus the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, w...

متن کامل

Well-balanced r-adaptive and moving mesh space-time discontinuous Galerkin method for the shallow water equations

In this article we introduce a well-balanced discontinuous Galerkin method for the shallow water equations on moving meshes. Particular emphasis will be given on r-adaptation in which mesh points of an initially uniform mesh move to concentrate in regions where interesting behaviour of the solution is observed. Obtaining well-balanced numerical schemes for the shallow water equations on fixed m...

متن کامل

Parallel multilevel methods for implicit solution of shallow water equations with nonsmooth topography on the cubed-sphere

High resolution and scalable parallel algorithms for the shallow water equations on the sphere are very important for modeling the global climate. In this paper, we introduce and study some highly scalable multilevel domain decomposition methods for the fully implicit solution of the nonlinear shallow water equations discretized with a second-order well-balanced finite volume method on the cube...

متن کامل

Finite Volume Evolution Galerkin Methods for the Shallow Water Equations with Dry Beds

We present a new Finite Volume Evolution Galerkin (FVEG) scheme for the solution of the shallow water equations (SWE) with the bottom topography as a source term. Our new scheme will be based on the FVEG methods presented in (Lukáčová, Noelle and Kraft, J. Comp. Phys. 221, 2007), but adds the possibility to handle dry boundaries. The most important aspect is to preserve the positivity of the wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NHM

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016